

PACKAGE SUBSTRATE SOLUTIONS FCBGA TECHNOLOGY

Kyocera provides package substrates by using organic products that are ideal for a variety of applications.

Kyocera FCBGA organic substrate solutions meet increasing customer requirements.

APPLICATIONS

- ▶ Processing unit packages e.g.:
 - ▶ CPU for servers
 - ▶ ASIC for networks
 - ▶ SoC for automobiles

FEATURES

- Large body and high layer count (90 mm SQ, 10L/side build-up)
- Fine pattern L/S=9 μm/12 μm
- ▶ Impedance control characteristic

KYOCERA TECHNOLOGY ROADMAP (CONVENTIONAL FCBGA SUBSTRATES)

Item		Plant	2023	2024	2025	2026	2027	
Maximum build-up layer count	Volume	Ayabe	9/x/9	10/x/10				
		Sendai	10/x/10					
	Sample	Ayabe	10/x/10			12/x/12		
		Sendai	- 14/x/14					
Maximum body size	Volume	Ayabe	90 x 90 mm	90 x 90 mm	115 x 115 mm	120 x 120 mm		
		Sendai		110 x 110 mm				
	Sample	Ayabe	100 x 100 mm	115 x 115 mm	120 x 120 mm	120 mm		
		Sendai	110 x 110 mm	120 x 120 mm	130 x 130 mm	x 130 mm		
Bump pitch / SRO	Volume	Ayabe	130/70 μm	130/60 µm	110/55 μm			
		Sendai		130/70 µm				
	Sample	Ayabe	130/60 µm	110/55 μm				
		Sendai	110/55 μm		90/50 μm			
Build-up line space (GZ/GL material) Flip chip area (max. length 3 mm)	Volume	Ayabe	9/12 µm		8/8 µm			
		Sendai	12/12 µm	2 μm 10/12 μm				
	Sample	Ayabe	9/12 μm	8/8 µm	6/6 µm		6/6 µm	
		Sendai	9/11 μm		6/7 µm		5/5 μm	

ENHANCED THIN CORE (ETC) FCBGA TECHNOLOGY

ADVANTAGES

- ▶ Electrical performance improvement due to reduced core thickness and Cu filled vias
- ▶ Higher integration thanks to advanced design rules
 - Smaller drill/hole size due to thin core
 - → higher amout of holes possible
 - Fine pattern on core
- Less layer count (and/or smaller body size)
 - Design to cost
 - Improved manufacturing lead time

Kyocera's "ETC-FCBGA" uses low CTE thin core technology with laser through holes to provide increased performance.

ELECTRICAL PERFORMANCE

- ▶ Cu filled through hole
 - → DC resistance improvement

Fine pitch through holes → Mutual inductance improvement Pow GND 250 µm 160 µm

ADVANCED DESIGN RULES

Conventional FCBGA

ETC-FCBGA

